All4Certs Cisco Archive,Exam Archive Free Sharing CertBus Updated Cisco 400-101 VCE and PDF Exam Practice Materials

Free Sharing CertBus Updated Cisco 400-101 VCE and PDF Exam Practice Materials

CertBus 2018 Real Cisco 400-101 CCIE Exam VCE and PDF Dumps for Free Download!

400-101 CCIE Exam PDF and VCE Dumps : 399QAs Instant Download: https://www.certgod.com/400-101.html [100% 400-101 Exam Pass Guaranteed or Money Refund!!]
☆ Free view online pdf on CertBus free test 400-101 PDF: https://www.certgod.com/online-pdf/400-101.pdf
☆ CertBus 2018 Real 400-101 CCIE exam Question PDF Free Download from Google Drive Share: https://drive.google.com/file/d/0B_3QX8HGRR1mdEpkTFZvSDJDc2c/view?usp=sharing

Following 400-101 399QAs are all new published by Cisco Official Exam Center

How to pass CCIE Jan 06,2018 Latest 400-101 exam questions exam? CertBus gives all candidates the 100% guaranteed CCIE Latest 400-101 vce dumps CCIE Routing and Switching Written v5.0 exam dumps. We help you to face your CCIE Latest 400-101 practice exam with confidence. Successful candidates share their reviews about our CCIE Latest 400-101 pdf CCIE Routing and Switching Written v5.0 dumps. Now CertBus supplies the most effective CCIE Hotest 400-101 study guide VCE and PDF dumps. We ensure our CCIE Hotest 400-101 exam questions exam questions are the most complete and authoritative compared with others, which will ensure your CCIE Latest 400-101 pdf dumps exam pass.

CertBus | 400-101 certification materials | videos | study guides. CertBus – 100% real 400-101 certification exam questions and answers. easily pass with a high score. 400-101 exam preparation – 400-101 review course – online – CertBus experts. CertBus – any 400-101 exam, 400-101 easy pass. CertBus| 400-101 exam dumps with pdf and vce, 100% pass guaranteed!

We CertBus has our own expert team. They selected and published the latest 400-101 preparation materials from Cisco Official Exam-Center: https://www.certgod.com/400-101.html

QUESTION NO:5

Refer to the exhibit.

A small enterprise connects its office to two ISPs, using separate T1 links. A static route is used

for the default route, pointing to both interfaces with a different administrative distance, so that one

of the default routes is preferred.

Recently the primary link has been upgraded to a new 10 Mb/s Ethernet link.

After a few weeks, they experienced a failure. The link did not pass traffic, but the primary static

route remained active. They lost their Internet connectivity, even though the backup link was

operating.

Which two possible solutions can be implemented to avoid this situation in the future? (Choose

two.)

A. Implement HSRP link tracking on the branch router R1.

B. Use a track object with an IP SLA probe for the static route on R1.

C. Track the link state of the Ethernet link using a track object on R1.

D. Use a routing protocol between R1 and the upstream ISP.

Answer: B,D

Explanation:

Interface Tracking

Interface tracking allows you to specify another interface on the router for the HSRP process to

monitor in order to alter the HSRP priority for a given group.

If the specified interface’s line protocol goes down, the HSRP priority of this router is reduced,

allowing another HSRP router with higher priority can become active (if it has preemption

enabled).

To configure HSRP interface tracking, use the standby [group] track interface [priority] command.

When multiple tracked interfaces are down, the priority is reduced by a cumulative amount. If you

explicitly set the decrement value, then the value is decreased by that amount if that interface is

down, and decrements are cumulative. If you do not set an explicit decrement value, then the

value is decreased by 10 for each interface that goes down, and decrements are cumulative.

The following example uses the following configuration, with the default decrement value of 10.

Note: When an HSRP group number is not specified, the default group number is group 0.

interface ethernet0

ip address 10.1.1.1 255.255.255.0

standby ip 10.1.1.3

standby priority 110

standby track serial0

standby track serial1

The HSRP behavior with this configuration is:

0 interfaces down = no decrease (priority is 110)

1 interface down = decrease by 10 (priority becomes100)

2 interfaces down = decrease by 10 (priority becomes 90)

Reference

http://www.cisco.com/en/US/tech/tk648/tk362/technologies_tech_note09186a0080094a91.shtml#i

ntracking


QUESTION NO:25

Refer to the exhibit.

After a link flap in the network, which two EIGRP neighbors will not be queried for alternative

paths? (Choose two.)

A. 192.168.1.1

B. 192.168.3.7

C. 192.168.3.8

D. 192.168.3.6

E. 192.168.2.1

F. 192.168.3.9

Answer: B,C

Explanation:

Explanation

Both 192.168.3.7 and 192.168.3.8 are in an EIGRP Stub area

The Enhanced Interior Gateway Routing Protocol (EIGRP) Stub Routing feature improves network

stability, reduces resource utilization, and simplifies stub router configuration.

Stub routing is commonly used in a hub and spoke network topology. In a hub and spoke network,

one or more end (stub) networks are connected to a remote router (the spoke) that is connected to

one or more distribution routers (the hub). The remote router is adjacent only to one or more

distribution routers. The only route for IP traffic to follow into the remote router is through a

distribution router. This type of configuration is commonly used in WAN topologies where the

distribution router is directly connected to a WAN. The distribution router can be connected to

many more remote routers. Often, the distribution router will be connected to 100 or more remote

routers. In a hub and spoke topology, the remote router must forward all nonlocal traffic to a

distribution router, so it becomes unnecessary for the remote router to hold a complete routing

table. Generally, the distribution router need not send anything more than a default route to the

remote router.

When using the EIGRP Stub Routing feature, you need to configure the distribution and remote

routers to use EIGRP, and to configure only the remote router as a stub. Only specified routes are

propagated from the remote (stub) router. The router responds to queries for summaries,

connected routes, redistributed static routes, external routes, and internal routes with the message

“inaccessible.” A router that is configured as a stub will send a special peer information packet to

all neighboring routers to report its status as a stub router. Any neighbor that receives a packet

informing it of the stub status will not query the stub router for any routes, and a router that has a

stub peer will not query that peer. The stub router will depend on the distribution router to send the

proper updates to all peers.

Reference

http://www.cisco.com/en/US/docs/ios/12_0s/feature/guide/eigrpstb.html#wp1021949


QUESTION NO:27

Refer to the exhibit.

What triggered the first SPF recalculation?

A. changes in a router LSA, subnet LSA, and external LSA

B. changes in a router LSA, summary network LSA, and external LSA

C. changes in a router LSA, summary network LSA, and summary ASBR LSA

D. changes in a router LSA, summary ASBR LSA, and external LSA

Answer: B

Explanation:

OSPFv2

Is built around links, and any IP prefix change in an area will trigger a full SPF. It advertises IP

information in Router and Network LSAs. The routers thus, advertise both the IP prefix information

(or the connected subnet information) and topology information in the same LSAs. This implies

that if an IP address attached to an interface changes, OSPF routers would have to originate a

Router LSA or a Network LSA, which btw also carries the topology information. This would trigger

a full SPF on all routers in that area, since the same LSAs are flooded to convey topological

change information. This can be an issue with an access router or the one sitting at the edge,

since many stub links can change regularly.

Only changes in interarea, external and NSSA routes result in partial SPF calculation (since type

3, 4, 5 and 7 LSAs only advertise IP prefix information) and thus IS-IS


QUESTION NO:32

Which two tunneling techniques support IPv6 multicasting? (Choose two.)

A. 6to4

B. 6over4

C. ISATAP

D. 6PE

E. GRE

Answer: B,E

Explanation:

When IPv6 multicast is supported (over a 6to4 tunnel), an IPv6 multicast routing protocol must be

used

Restrictions for Implementing IPv6 Multicast

IPv6 multicast for Cisco IOS software uses MLD version 2. This version of MLD is fully backward-

compatible with MLD version 1 (described in RFC 2710). Hosts that support only MLD version 1

will interoperate with a router running MLD version 2. Mixed LANs with both MLD version 1 and

MLD version 2 hosts are likewise supported.

IPv6 multicast is supported only over IPv4 tunnels in Cisco IOS Release 12.3(2)T, Cisco IOS

Release 12.2

(18)S, and Cisco IOS Release 12.0(26)S.

When the bidirectional (bidir) range is used in a network, all routers in that network must be able to

understand the bidirectional range in the bootstrap message (BSM).

IPv6 multicast routing is disabled by default when the ipv6 unicast-routing command is configured.

On Cisco Catalyst 6500 and Cisco 7600 series routers, the ipv6 multicast-routing also must be

enabled in order to use IPv6 unicast routing

Reference http://www.cisco.com/web/about/ac123/ac147/ac174/ac197/

about_cisco_ipj_archive_article09186a00800c830a.html

http://www.cisco.com/en/US/docs/ios/ipv6/configuration/guide/ip6-multicast.html

https://supportforums.cisco.com/thread/183386


QUESTION NO:33

Which two OSPF LSA types are new in OSPF version 3? (Choose two.)

A. Link

B. NSSA external

C. Network link

D. Intra-area prefix

E. AS domain

Answer: A,D

Explanation:

New LSA Types

OSPFv3 carries over the seven basic LSA types we’re familiar with from OSPFv2. However, the

type 1 and 2 LSAs have been re-purposed, as will be discussed in a bit. OSPFv3 also introduces

two new LSA types: Link and Intra-area Prefix.

Reference

http://packetlife.net/blog/2010/mar/2/ospfv2-versus-ospfv3/


Latest 400-101 Dumps400-101 PDF Dumps400-101 VCE Dumps

QUESTION NO:42

Which type of domains is interconnected using Multicast Source Discovery Protocol?

A. PIM-SM

B. PIM-DM

C. PIM-SSM

D. DVMRP

Answer: A

Explanation: Multicast Source Discovery Protocol (MSDP) is a Protocol Independent Multicast

(PIM) family multicast routing protocol defined by Experimental RFC 3618. MSDP interconnects

multiple IPv4 PIM Sparse-Mode (PIM-SM) domains which enables PIM-SM to have Rendezvous

Point (RP) redundancy and inter-domain multicasting.

Reference

http://en.wikipedia.org/wiki/Multicast_Source_Discovery_Protocol


QUESTION NO:43

Which two multicast address ranges are assigned as source-specific multicast destination

addresses and are reserved for use by source-specific applications and protocols? (Choose two.)

A. 232.0.0.0/8

B. 239.0.0.0/8

C. 232.0.0.0/4

D. FF3x::/32

E. FF2x::/32

F. FF3x::/16

Answer: A,D

Explanation: Source-specific multicast (SSM) is a method of delivering multicast packets in which

the only packets that are delivered to a receiver are those originating from a specific source

address requested by the receiver. By so limiting the source, SSM reduces demands on the

network and improves security.

SSM requires that the receiver specify the source address and explicitly excludes the use of the (*,

G) join for all multicast groups in RFC 3376, which is possible only in IPv4’s IGMPv3 and IPv6’s

MLDv2.

Source-specific multicast is best understood in contrast to any-source multicast (ASM). In the

ASM service model a receiver expresses interest in traffic to a multicast address. The multicast

network must

1. discover all multicast sources sending to that address, and

2. route data from all sources to all interested receivers.

This behavior is particularly well suited to groupware applications where

1. all participants in the group want to be aware of all other participants, and

2. the list of participants is not known in advance.

The source discovery burden on the network can become significant when the number of sources

is large.

In the SSM service model, in addition to the receiver expressing interest in traffic to a multicast

address, the receiver expresses interest in receiving traffic from only one specific source sending

to that multicast address.

This relieves the network of discovering many multicast sources and reduces the amount of

multicast routing information that the network must maintain.

SSM requires support in last-hop routers and in the receiver’s operating system. SSM support is

not required in other network components, including routers and even the sending host. Interest in

multicast traffic from a specific source is conveyed from hosts to routers using IGMPv3 as

specified in RFC 4607.

SSM destination addresses must be in the ranges 232.0.0.0/8 for IPv4 or FF3x::/96 for IPv6.

Reference

http://en.wikipedia.org/wiki/Source-specific_multicast


QUESTION NO:48

Which IGMPv2 message contains a non-zero “Max Response Time”?

A. Membership Query

B. Membership Report

C. Membership Delay

D. Backward Compatible IGMPv1 Report Message

Answer: A

Explanation:


QUESTION NO:52

Refer to the exhibit.

Which two statements are correct? (Choose two.)

A. The hexadecimal value of the number of packets that hit the access list is 0x723E6E12.

B. The access list has logging enabled.

C. The packet was discarded.

D. The command ip access-list logging hash-generation is enabled.

E. The Telnet connection is successfully set up.

Answer: B,D

Explanation:


QUESTION NO:57

Refer to the exhibit.

What would be the security risk when you are using the above configuration?

A. The locally configured users would override the TACACS security policy.

B. It would be impossible to log in to the router if the TACACS server is down.

C. The default login policy would override the TACACS configuration.

D. If the TACACS server failed, no authentication would be required.

Answer: D

Explanation:


CertBus exam braindumps are pass guaranteed. We guarantee your pass for the 400-101 exam successfully with our Cisco materials. CertBus CCIE Routing and Switching Written v5.0 exam PDF and VCE are the latest and most accurate. We have the best Cisco in our team to make sure CertBus CCIE Routing and Switching Written v5.0 exam questions and answers are the most valid. CertBus exam CCIE Routing and Switching Written v5.0 exam dumps will help you to be the Cisco specialist, clear your 400-101 exam and get the final success.

400-101 Latest questions and answers on Google Drive(100% Free Download): https://drive.google.com/file/d/0B_3QX8HGRR1mdEpkTFZvSDJDc2c/view?usp=sharing

400-101 Cisco exam dumps (100% Pass Guaranteed) from CertBus: https://www.certgod.com/400-101.html [100% Exam Pass Guaranteed]

Why select/choose CertBus?

Millions of interested professionals can touch the destination of success in exams by certgod.com. products which would be available, affordable, updated and of really best quality to overcome the difficulties of any course outlines. Questions and Answers material is updated in highly outclass manner on regular basis and material is released periodically and is available in testing centers with whom we are maintaining our relationship to get latest material.

BrandCertbusTestkingPass4sureActualtestsOthers
Price$45.99$124.99$125.99$189$69.99-99.99
Up-to-Date Dumps
Free 365 Days Update
Real Questions
Printable PDF
Test Engine
One Time Purchase
Instant Download
Unlimited Install
100% Pass Guarantee
100% Money Back
Secure Payment
Privacy Protection

Leave a Reply

Your email address will not be published. Required fields are marked *